TOPIC PLAN

Partner organization	Goce Delcev University - Stip, North Macedonia
Topic	Function with Two Variables: Application of Derivatives
Lesson title	Minimizing and Maximizing Problems
Learning	\checkmark Students will acquire and deal with derivatives of

\checkmark Students will be able to estimate minimum and maximum of different sizes using differentiation of functions with two variables;
\checkmark Students will be able to deal with different problems in everyday life, which require calculating minimum or maximum value of a given size;
\checkmark Students are encouraged to use technology and different software in their work, while considering problem - based situations.

| Aim of the | The aim of the lecture is to make students able to |
| :--- | :--- | lecture / Description of the practical problem

Strategies/Activitie

s
\square Graphic Organizer
Think/Pair/Share
\square Modeling
Collaborative learning \square Discussion questions \square Project based learning \square Problem based learning

Assessment for learning \square Observations
\square Conversations
\square Work sample \square Conference \square Check list \square Diagnostics

Assessment as

 learning\square Self-assessment \square Peer-assessment \square Presentation \square Graphic Organizer
"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

Co-funded by the Erasmus+ Programme of the European Union

Students can create different charts with the data in the table, using Excel:

According to the values in the table, students can realize that the area is the smallest when three dimensions of the rectangular cubic are equal. But, this conclusion needs scientific support...
2. About the second problem, students' have to consider that the area of the box is $200 \mathrm{~cm}^{2}$ and have to remind that we can calculate the area of the box with the formula $P=2(a b+b c+a c)$ where a, b and c are the dimensions of the box. Students have to
"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

	determine the dimensions of the box which gives the largest volume. The volume is calculated with the formula $V=a b c$. Thus, students have to maximize the volume. As well as in the first problem, students are encouraged to use digital tools in order to determine the solution easier. They can use Excel, too, for considering how the volume is changing with the change of the dimensions, while the area is fixed. One example for such Excel spreadsheet is following:				
	a	b	c	P	V
	5	5	7,5	200	187,5
	6	6	$\begin{gathered} 5,33333 \\ 3 \end{gathered}$	200	192
	7	7	$\begin{gathered} 3,64285 \\ 7 \end{gathered}$	200	178,5
	6	7	$\begin{gathered} 4,46153 \\ 8 \end{gathered}$	200	187,3846154
	6,5	6,5	$\begin{gathered} 4,44230 \\ 8 \end{gathered}$	200	187,6875
	7,5	7,5	$\begin{gathered} 2,91666 \\ 7 \end{gathered}$	200	164,0625
	6,2	6,2	$\begin{gathered} \hline 4,96451 \\ 6 \\ \hline \end{gathered}$	200	190,836
	6	5	$\begin{gathered} 6,36363 \\ 6 \end{gathered}$	200	190,9090909
	7	5	$\begin{gathered} 5,41666 \\ 7 \end{gathered}$	200	189,5833333
	6,2	5,7	$\begin{gathered} 5,43361 \\ 3 \end{gathered}$	200	192,0238992
	6,2	5,9	$\begin{gathered} 5,24132 \\ ? \end{gathered}$	200	191,7275702
	6,1	6	$\begin{gathered} 5,23966 \\ 9 \end{gathered}$	200	191,7719008
	6	5,9	$\begin{gathered} \hline 5,42857 \\ 1 \\ \hline \end{gathered}$	200	192,1714286
	9	7	2,3125	200	145,6875
	10	5	$\begin{gathered} 3,33333 \\ 3 \end{gathered}$	200	166,6666667
	10	8	1,11111	200	88,88888889

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

Co-funded by the Erasmus+ Programme of the European Union

			1		
	9	8	1,64705 9	200	118,5882353
6,1	5,9	5,33416 7	200	191,9766583	
6,1	5,8	5,43025 2	200	192,1223193	

Students can create different charts with the data in the table, using Excel:

It is a little bit difficult for giving conclusion about the result in this problem, although it will be heuristically done.

Thus, mathematical support, algorithms and formulas are necessary for exact calculation of the solution in both of the problems.

Such minimizing and maximizing problems can easily be solved with an application of derivatives of functions with several variables. In these certain problems, we apply functions with two variables.

If $z=f(x, y)$ is given function with two independent variables, we determine its minimum/maximum values with the next algorithm: 1) we first calculate partial derivatives of first order, i.e. $z_{x}^{\prime}=\frac{\partial z}{\partial x}$ and $z_{y}^{\prime}=\frac{\partial z}{\partial y}$; 2)

Action	we solve the system of equations $\frac{\partial z}{\partial x}=0$ and $\frac{\partial z}{\partial y}=0$. The solutions of the system give us possible extreme values and are called stationary points; 3) we calculate the partial derivatives of the second order for the $\text { function } z=f(x, y), \quad \text { i.e. } \quad z^{\prime \prime}{ }_{x x}=\frac{\partial^{2} z}{\partial x^{2}}, \quad z_{x y}^{\prime \prime}=\frac{\partial^{2} z}{\partial y \partial x},$ $z_{y y}^{\prime \prime}=\frac{\partial^{2} z}{\partial y^{2}} \text { and } z_{y x}^{\prime \prime}=\frac{\partial^{2} z}{\partial x \partial y} \text {; 4) we calculate the value }$ of each partial derivative of the second order in each stationary point. $z^{\prime \prime}{ }_{x y}=z^{\prime \prime}{ }_{y x}$ is necessary condition for the function to reach minimum/maximum value in certain stationary point. 5) we calculate the determinant $\Delta=\left\|\begin{array}{ll} z^{\prime \prime}{ }_{x x}\left(x_{0}, y_{0}\right) & z^{\prime \prime}{ }_{x y}\left(x_{0}, y_{0}\right) \\ z^{\prime \prime}{ }_{y x}\left(x_{0}, y_{0}\right) & z^{\prime \prime}\left(x_{0}, y_{0}\right) \end{array}\right\| \text { for each stationary point }$ $\left.\left(x_{0}, y_{0}\right) ; 6\right)$ if $\Delta<0$ in the considered stationary point, the function doesn't reach an extreme value in that point. If $\Delta=0$ we cannot conclude anything about the extreme value in that point and if $\Delta>0$ we conclude that the function has extreme value in the considered stationary point; 7) in order to be $\Delta>0$, because $z^{\prime \prime}{ }_{x y}\left(x_{0}, y_{0}\right)=z^{\prime \prime}{ }_{y x}\left(x_{0}, y_{0}\right)$, thus the sign of $z^{\prime \prime}{ }_{x x}\left(x_{0}, y_{0}\right)$ and $z^{\prime \prime}{ }_{y y}\left(x_{0}, y_{0}\right)$ must be the same. If $z^{\prime \prime}{ }_{x x}\left(x_{0}, y_{0}\right)>0$ then the function reaches local minimum in the considered stationary point. If $z_{x x}\left(x_{0}, y_{0}\right)<0$ then the function reaches local maximum in the considered stationary point. If we consider certain size as function with to variables, we can calculate its extreme values with previously described procedure. For the first given problem, we know that $V=a b c$ and $V=125 \text {, thus } a b c=125 \text {, i.e. } c=\frac{125}{a b} .$ We have to minimize the area, and the area is $P=2(a b+b c+a c)$. Substituting $c=\frac{125}{a b}$, we have

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

	$P=2\left(a b+b \cdot \frac{125}{a b}+a \cdot \frac{125}{a b}\right), \text { i.e. } P=2\left(a b+\frac{125}{a}+\frac{125}{b}\right)$. Now we consider the area as a function with two real variables and following the algorithm above, we calculate that for $a=b=c=5$ we have minimal area. In a same way we can solve the second problem.	
Materials / equipment / digital tools / software	Literature given in the referen document / Digital device which supports Ex Excel	he end of the
Consolidatio n	With the given examples studen derivatives are important for solvin to calculate partial derivatives and to maximize / minimize certain technology, different digital tools but can also realize that even problems is difficult without math	nsider that the r life problems. S o apply differen given conditio ware as a help chnology, solvi ge.
Reflections and next steps		
Activities that worked		Parts to be revisited
Problem solvin	, collaboration, using technology	Depends on conversation teacher will that students appropriate p
References		
[1] E. Atanasova, S. Georgieva (2002), Matematika 2, Universitet "Sv. Kiril I Metodij" - Skopje [2] S. Calaway D. Hoffman and D.Lippman (2014) "Applied Calculus" [3] P.D. Lax, M. S.Terrell (2014) "Calculus with Applications", Springer		

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

