

TOPIC PLAN								
Partner	Goce Delcev University – Stip, North Macedonia							
organization	Eurotion with Two Variables: Application of Derivatives							
Topic Lesson title	Function with Two Variables: Application of Derivatives							
	Minimizing and Maximizing Problems							
Learning objectives	 ✓ Students will acquire and deal with derivatives of functions with several variables; Strategies/Activ 							
	 Students will be able to estimate minimum and maximum of different sizes using differentiation of functions with two variables; 	s Graphic Organizer Think/Pair/Share Modeling Collaborative learning Discussion						
	 Students will be able to deal with different problems in everyday life, which require calculating minimum or maximum value of a given size; 							
	 Students are encouraged to use technology and different software in their work, while considering problem - based situations. 	questions □Project based learning ■Problem based						
Aim of the lecture / Description	The aim of the lecture is to make students able to calculate derivatives of a function with several variables and apply the derivatives to calculate minimum and							
of the	maximum of given size. Assessment f							
practical problem	The teacher gives the next problems to the students:	learning Observations						
	 We have to make a tin tank in a form of rectangular cuboid that will collect 125 liters liquid. Which dimensions of the tank will require the least amount of material for its construction? 	Conversations Work sample Conference Check list						
	2. We have to make box which requires 200 cm ² cardboard for its construction. Which dimensions should the box be in order its volume to be the largest possible?	Assessment as learning						
	The teacher divides students into two groups and associates a problem to each group. Students have to work and collaborate in order to find a solution of the problem.	□Peer-assessment □Presentation □Graphic Organizer						

Draviana		lanh (= C)				
Previous knowledge assumed:	 derivatives of functions with one real variable area and volume of geometric 3D-forms algebraic equations differentiation of functions of two real variables determinants of second and third order 					Homework Assessment of learning Test Quiz Presentation Project Dublished work
Introduction / Theoretical basics	 1. About the first problem, students have to consider that the volume of the cuboid will be 125 <i>I</i> =125 dm³ and that the volume can be calculated with the formula <i>V=abc</i> where <i>a</i>, <i>b</i> and <i>c</i> are the dimensions of the cuboid. A sketch of the cuboid is necessary. They also have to consider that the amount of material needed for the tin tank construction is equal to the tank's area. The area can be calculated with the formula <i>P=2(ab+bc+ac)</i>. Thus, students have to minimize the area of the rectangular cuboid with fixed volume. Students are encouraged to use Excel and formulas in it to consider how the area is changing with the change of cuboide's dimensions, while the volume is fixed. 					
	One example for such Excel spreadsheet is following:				neet is following:	
	a	b	С	v	Р	
	2	3	20,8333 3	125	220,3333333	
	3	4	10,4166 7	125	169,8333333	
	4	5	6,25	125	152,5	
	5	6	4,16666 7	125	151,6666667	
	6	7	2,97619	125	161,3809524	
	7	8	2,23214 3	125	178,9642857	
	8	9	1,73611 1	125	203,0277778	
	9	10	1,38888 9	125	232,7777778	

10	9	1,38888 9	125	232,7777778
7	7	2,55102	125	169,4285714
8	8	1,95312 5	125	190,5
6	6	3,47222 2	125	155,3333333
5	5	5	125	150
4	4	7,8125	125	157
10	12	1,04166 7	125	285,8333333
9	6	2,31481 5	125	177,4444444
5	4	6,25	125	152,5
4	4	7,8125	125	157
6	9	2,31481 5	125	177,4444444

Students can create different charts with the data in the table, using Excel:

2. About the second problem, students' have to consider that the area of the box is 200 cm² and have to remind that we can calculate the area of the box with the formula P=2(ab+bc+ac) where *a*, *b* and *c* are the dimensions of the box. Students have to

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

determine the dimensions of the box which gives the largest volume. The volume is calculated with the formula <i>V=abc</i> . Thus, students have to maximize the volume.					
As well a to use o easier. T volume while the					
One exa				eet is following:	
а	b	С	Р	V	
5	5	7,5	200	187,5	
6	6	5,33333 3	200	192	
7	7	3,64285 7	200	178,5	
6	7	4,46153 8	200	187,3846154	
6,5	6,5	4,44230 8	200	187,6875	
7,5	7,5	2,91666 7	200	164,0625	
6,2	6,2	4,96451 6	200	190,836	
6	5	6,36363 6	200	190,9090909	
7	5	5,41666 7	200	189,5833333	
6,2	5,7	5,43361 3	200	192,0238992	
6,2	5,9	5,24132 2	200	191,7275702	
6,1	6	5,23966 9	200	191,7719008	
6	5,9	5,42857 1	200	192,1714286	
9	7	2,3125	200	145,6875	
10	5	3,33333 3	200	166,6666667	
10	8	1,11111	200	88,8888889	

	we solve the system of equations $\frac{\partial z}{\partial x} = 0$ and $\frac{\partial z}{\partial y} = 0$.	
	The solutions of the system give us possible extreme values and are called stationary points; 3) we calculate	
	the partial derivatives of the second order for the	
	function $z = f(x, y)$, i.e. $z''_{xx} = \frac{\partial^2 z}{\partial x^2}$, $z''_{xy} = \frac{\partial^2 z}{\partial y \partial x}$,	
	$z"_{yy} = \frac{\partial^2 z}{\partial y^2}$ and $z"_{yx} = \frac{\partial^2 z}{\partial x \partial y}$; 4) we calculate the value	
	of each partial derivative of the second order in each stationary point. $z''_{xy} = z''_{yx}$ is necessary condition for	
	the function to reach minimum/maximum value in certain stationary point. 5) we calculate the determinant	
	$\Delta = \begin{vmatrix} z "_{xx} (x_0, y_0) & z "_{xy} (x_0, y_0) \\ z "_{yx} (x_0, y_0) & z "_{yy} (x_0, y_0) \end{vmatrix} \text{ for each stationary point}$	
	(x_0, y_0) ; 6) if $\Delta < 0$ in the considered stationary point,	
	the function doesn't reach an extreme value in that point. If $\Delta = 0$ we cannot conclude anything about the extreme value in that point and if $\Delta > 0$ we conclude that the function has extreme value in the considered stationary point; 7) in order to be $\Delta > 0$, because	
	$z''_{xy}(x_0, y_0) = z''_{yx}(x_0, y_0)$, thus the sign of $z''_{xx}(x_0, y_0)$	
	and $z''_{yy}(x_0, y_0)$ must be the same. If $z''_{xx}(x_0, y_0) > 0$	
	then the function reaches local minimum in the considered stationary point. If $z''_{xx}(x_0, y_0) < 0$ then the	
	function reaches local maximum in the considered stationary point.	
	If we consider certain size as function with to variables, we can calculate its extreme values with previously described procedure.	
Action	For the first given problem, we know that $V = abc$ and	
	$V = 125$, thus $abc = 125$, i.e. $c = \frac{125}{ab}$.	
	We have to minimize the area, and the area is	
	$P = 2(ab+bc+ac)$. Substituting $c = \frac{125}{ab}$, we have	

Materials / equipment / digital tools / software	$P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), \text{ i.e. } P = 2\left(ab + b \cdot \frac{125}{ab} + a \cdot \frac{125}{ab}\right), $	n with two real n above, we inimal area. roblem.			
Consolidatio n Reflections an	With the given examples students can consider that the real functions and their derivatives are important for solving real life problems. Students will learn how to calculate partial derivatives and how to apply differentiation and derivatives to maximize / minimize certain value by given conditions. Students can use technology, different digital tools and software as a help for solving problems, but can also realize that even with technology, solving different everyday problems is difficult without math knowledge.				
Activities that	•	Parts to be revisited			
	g, collaboration, using technology	Depends on the students, in a conversation with students the teacher will realize the difficulties that students had and then revisit appropriate parts.			
References					
 [1] E. Atanasova, S. Georgieva (2002), <i>Matematika 2</i>, Universitet "Sv. Kiril I Metodij" - Skopje [2] S. Calaway D. Hoffman and D.Lippman (2014) "Applied Calculus" [3] <i>P.D. Lax</i>, M. S.Terrell (2014) "Calculus with Applications", Springer 					